Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ai-Qing Ma,^a Long-Guan Zhu^a* and Seik Weng Ng^b

^aDepartment of Chemistry, Zhejiang University, Hangzhou 310007, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.009 \text{ Å}$ Disorder in main residue R factor = 0.052 wR factor = 0.108 Data-to-parameter ratio = 12.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[[[(2,2'-bipyridine)copper(II)]-hemi- μ_2 -2-nitroterephthalato-hemi- μ_4 -2-nitroterephthalato] monohydrate]

The polymeric title compound, {[Cu(C₈H₃NO₆)(C₁₀H₈N₂)]·-H₂O}_n, has two disordered nitroterephthalate units located around centres of inversion; one functions in a μ_2 -bridging mode and the other in a μ_4 -bridging mode to surround the five-coordinated Cu atom in a square-pyramidal geometry. The crystal structure reveals a two-dimensional hydrogenbonded network involving a water molecule of crystallization. Received 18 January 2005 Accepted 1 February 2005 Online 12 February 2005

Comment

A previous study of copper 2-nitroterephthalate reported the inorganic–organic hybrid structure (Ma & Zhu, 2004); the compound exhibits a square-pyramidal coordination involving bridging dicarboxylate and hydroxyl groups, with the apical site of the pyramid occupied by a water molecule. The crystal structure is a three-dimensional network.

However, with the chelating 2,2'-bipyridine heterocycle, copper 2-nitroterephthalate adopts a only two-dimensional structure and does not include a coordinated water molecule, (I) (Fig. 1). The two symmetry-independent dianionic groups are each disordered over an inversion centre. One of the groups functions in the μ_2 -bridging mode and the other in the μ_4 -bridging mode to surround the five-coordinated Cu atom. The apical site of the square pyramid is occupied by the O atom of the μ_4 -bridging dianion.

Experimental

A mixture of copper chloride dihydrate (0.035 g, 0.2 mmol), 2-nitroterephthalic acid (0.021 g, 0.1 mmol), 2,2'-bipyridine (0.032 g, 0.2 mmol), sodium hydroxide (0.008 g, 0.2 mmol) and water (8 ml) was sealed in a 25 ml stainless steel Teflon-lined bomb. The bomb was heated at 423 K for 3 d. After cooling, deep-blue block-shaped crystals of (I) were obtained.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Z = 2

 $D_x = 1.618 \text{ Mg m}^{-3}$

Cell parameters from 963

 $0.23 \times 0.19 \times 0.17$ mm

3534 independent reflections

2227 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

 $w = 1/[\sigma^2(F_o^2) + (0.0309P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

independent and constrained

Mo $K\alpha$ radiation

reflections

 $\theta = 2.3 - 20.4^{\circ}$ $\mu = 1.24 \text{ mm}^{-1}$

T = 295 (2) K

Block, blue

 $R_{\rm int} = 0.048$

 $\theta_{\rm max} = 26.0^{\circ}$

 $\begin{array}{l} h = -11 \rightarrow 11 \\ k = -12 \rightarrow 12 \end{array}$

 $l = -14 \rightarrow 11$

refinement

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.40 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

Crystal data

$$\begin{split} & [\mathrm{Cu}(\mathrm{C_8H_3NO_6})(\mathrm{C_{10}H_8N_2})]\cdot\mathrm{H_2O} \\ & M_r = 446.85 \\ & \mathrm{Triclinic}, \ P\overline{1} \\ & a = 9.537 \ (1) \ \text{\AA} \\ & b = 9.950 \ (1) \ \text{\AA} \\ & c = 11.363 \ (1) \ \text{\AA} \\ & \alpha = 94.156 \ (2)^{\circ} \\ & \beta = 107.839 \ (2)^{\circ} \\ & \gamma = 113.535 \ (2)^{\circ} \\ & V = 917.31 \ (16) \ \text{\AA}^3 \end{split}$$

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{\min} = 0.764$, $T_{\max} = 0.817$ 5077 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.108$ S = 0.913534 reflections 295 parameters

Table 1

Selected geometric parameters (Å, °).

Cu1-O5	1.949 (3)	Cu1-N2	1.996 (4)
Cu1-O1	1.955 (3)	Cu1-O5 ⁱ	2.373 (3)
Cu1-N1	1.994 (4)		
O5-Cu1-O1	88.80 (12)	N1-Cu1-N2	80.84 (17)
O5-Cu1-N1	178.37 (15)	O5-Cu1-O5 ⁱ	77.27 (12)
O1-Cu1-N1	91.64 (15)	$O1-Cu1-O5^i$	89.05 (13)
O5-Cu1-N2	98.57 (14)	N1-Cu1-O5 ⁱ	104.30 (13)
O1-Cu1-N2	170.92 (15)	$N2-Cu1-O5^{i}$	97.70 (13)

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$01W-H1W1\cdots O2$ $O1W-H1W2\cdots O6^{ii}$	0.85 (6) 0.85 (5)	1.98 (6) 2.09 (4)	2.815 (6) 2.879 (7)	169 (6) 155 (8)
$O1W - H1W2 \cdots O6^n$	0.85 (5)	2.09 (4)	2.879 (7)	155

Symmetry code: (ii) -x, -y, 1-z.

The aromatic H atoms were positioned geometrically, and were included in the refinement in the riding-model approximation $[C-H = 0.93 \text{ Å} \text{ and } U_{iso}(H) = 1.2U_{eq}(C)]$. The water H atoms were located

Figure 1

ORTEPII (Johnson, 1976) plot of a portion of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The water molecules are not shown. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]

in a difference Fourier map and were refined with distance restraints of O-H = 0.85 (1) Å and H···H = 1.39 (1) Å, and $U_{\rm iso}({\rm H})$ = $1.2U_{\rm eq}({\rm O})$. The two nitro groups are disordered with respect to H atoms; the C-N distances were restrained to 1.470 (5) Å, a tighter restraint being used to avoid too large a difference in distances. Additionally, the displacement parameters of the O atoms of the nitro groups were restrained to be nearly isotropic.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

We thank the Analytical and Measurement Fund of Zhejiang Province, the National Natural Science Foundation of China (grant No. 50073019) and the University of Malaya for supporting this study.

References

- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Ma, A.-Q. & Zhu, L. -G. (2004). Inorg. Chem. Commun. 7, 186-188.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.