Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ai-Qing Ma, ${ }^{\text {a }}$ Long-Guan Zhu ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou 310007, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
Disorder in main residue
R factor $=0.052$
$w R$ factor $=0.108$
Data-to-parameter ratio $=12.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Poly[[[[(2,2'-bipyridine)copper(II)]-hemi- μ_{2}-2-nitro-terephthalato-hemi- μ_{4}-2-nitroterephthalato] monohydrate]

The polymeric title compound, $\left\{\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{NO}_{6}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]\right.$-$\left.\mathrm{H}_{2} \mathrm{O}\right\}_{n}$, has two disordered nitroterephthalate units located around centres of inversion; one functions in a μ_{2}-bridging mode and the other in a μ_{4}-bridging mode to surround the five-coordinated Cu atom in a square-pyramidal geometry. The crystal structure reveals a two-dimensional hydrogenbonded network involving a water molecule of crystallization.

Comment

A previous study of copper 2-nitroterephthalate reported the inorganic-organic hybrid structure (Ma \& Zhu, 2004); the compound exhibits a square-pyramidal coordination involving bridging dicarboxylate and hydroxyl groups, with the apical site of the pyramid occupied by a water molecule. The crystal structure is a three-dimensional network.

(I)

However, with the chelating $2,2^{\prime}$-bipyridine heterocycle, copper 2-nitroterephthalate adopts a only two-dimensional structure and does not include a coordinated water molecule, (I) (Fig. 1). The two symmetry-independent dianionic groups are each disordered over an inversion centre. One of the groups functions in the μ_{2}-bridging mode and the other in the μ_{4}-bridging mode to surround the five-coordinated Cu atom. The apical site of the square pyramid is occupied by the O atom of the μ_{4}-bridging dianion.

Experimental

A mixture of copper chloride dihydrate $(0.035 \mathrm{~g}, 0.2 \mathrm{mmol})$, 2-nitroterephthalic acid $(0.021 \mathrm{~g}, 0.1 \mathrm{mmol}), 2,2^{\prime}$-bipyridine (0.032 g , $0.2 \mathrm{mmol})$, sodium hydroxide $(0.008 \mathrm{~g}, 0.2 \mathrm{mmol})$ and water $(8 \mathrm{ml})$ was sealed in a 25 ml stainless steel Teflon-lined bomb. The bomb was heated at 423 K for 3 d . After cooling, deep-blue block-shaped crystals of (I) were obtained.

Received 18 January 2005

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{NO}_{6}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=446.85$
Triclinic, $P \overline{1}$
$a=9.537$ (1) \AA
$b=9.950$ (1) \AA
$c=11.363$ (1) \AA
$\alpha=94.156(2)^{\circ}$
$\beta=107.839(2)^{\circ}$
$\gamma=113.535(2)^{\circ}$
$V=917.31(16) \AA^{3}$

Data collection

Bruker SMART APEX areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.764, T_{\text {max }}=0.817$
5077 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.108$
$S=0.91$
3534 reflections
295 parameters
$Z=2$
$D_{x}=1.618 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 963
reflections
$\theta=2.3-20.4^{\circ}$
$\mu=1.24 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, blue
$0.23 \times 0.19 \times 0.17 \mathrm{~mm}$

3534 independent reflections
2227 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 12$
$l=-14 \rightarrow 11$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0309 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.40 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.41 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 5$	$1.949(3)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$1.996(4)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.955(3)$	$\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{i}}$	$2.373(3)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.994(4)$		
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O} 1$	$88.80(12)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$80.84(17)$
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{N} 1$	$178.37(15)$	$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{i}}$	$77.27(12)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$91.64(15)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{i}}$	$89.05(13)$
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{N} 2$	$98.57(14)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{i}}$	$104.30(13)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$170.92(15)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{i}}$	$97.70(13)$

Symmetry code: (i) $1-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1W-H1W1 \cdots O2	$0.85(6)$	$1.98(6)$	$2.815(6)$	$169(6)$
O1 $W-\mathrm{H} 1 W 2 \cdots 6^{\mathrm{ii}}$	$0.85(5)$	$2.09(4)$	$2.879(7)$	$155(8)$

Symmetry code: (ii) $-x,-y, 1-z$.
The aromatic H atoms were positioned geometrically, and were included in the refinement in the riding-model approximation $[\mathrm{C}-\mathrm{H}$ $=0.93 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. The water H atoms were located

Figure 1
ORTEPII (Johnson, 1976) plot of a portion of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The water molecules are not shown. [Symmetry code: (i) $1-x, 1-y, 1-z$.]
in a difference Fourier map and were refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.85(1) \AA$ and $\mathrm{H} \cdots \mathrm{H}=1.39(1) \AA$, and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{O})$. The two nitro groups are disordered with respect to H atoms; the $\mathrm{C}-\mathrm{N}$ distances were restrained to 1.470 (5) \AA, a tighter restraint being used to avoid too large a difference in distances. Additionally, the displacement parameters of the O atoms of the nitro groups were restrained to be nearly isotropic.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the Analytical and Measurement Fund of Zhejiang Province, the National Natural Science Foundation of China (grant No. 50073019) and the University of Malaya for supporting this study.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Ma, A.-Q. \& Zhu, L. -G. (2004). Inorg. Chem. Commun. 7, 186-188.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

